Primary Base module used to create IOT instance processes which communicate via various flavors of sockets.
Find a file
2019-03-24 11:50:08 -07:00
examples 0.1.17 add removeSocket method, add final catch of all packet processing errors. 2019-03-17 13:55:29 -07:00
src 0.1.17 add removeSocket method, add final catch of all packet processing errors. 2019-03-17 13:55:29 -07:00
test fix adding root namespace to lookups 2018-05-28 14:18:20 -07:00
.eslintrc.js fixed separation of packet properties for each socket type when customizing 2018-01-29 21:52:24 -08:00
.gitignore update to esm from @std/esm 2018-05-16 07:08:14 -07:00
.npmignore fix adding root namespace to lookups 2018-05-28 14:18:20 -07:00
license.md Refactored init method and added an "addSocket" method called from there. 2019-01-01 16:39:08 -08:00
package.json 0.1.18 updated of uci socket 2019-03-24 11:50:08 -07:00
readme.md Refactored init method and added an "addSocket" method called from there. 2019-01-01 16:39:08 -08:00

uCOMmandIt (UCI) - An Extendable Inter Process Communication Base Class

Supports multi type and transport communication via a JSON packet.

used as the basis of many of the UCI library classes

Build Status Inline docs Dependencies devDependencies codecov

What is it

This module contains an JSON packet socket communication ES6 class. By extending this class you can bake in pretty much any conceivable inter process communication from named pipe to mqtt into your own class and instances. Your extended class can be both a socket(server) and a consumer(client) at the same time which allows you to listen for incoming packets, process them and then send or push them on to other processes running either locally or remotely. Further you can, at runtime, create additional sockets and consumers.

This base class is the core of the uCOMmandIt (UCI) library. Almost all other classes in this library are extensions of this base class.

What's it good for

By extending this class you can create all manner of "smart" processes that an take action or request action from/to another process (either local or remote) via a simple JSON packet. So it's good for....most ANYTHING. Need to talk to an I2C device on some SBC then create an instance of an I2C-device class that talks to an instance of an I2C bus class both of which are extended from this UCI base class. Now create a "master controller" from the base class that takes in command packets from say a websocket browser or an mqtt interface like Home Assitant and boom you are controlling some I2C device from your browser or home assistant with a click. But that's already been done for you as both as UCI has both an i2c-device class and a UCI i2c-bus class available UCI @github or UCI @npm or UCI @npms.io

Prerequisites

You'll of course need nodejs running and either npm or yarn. UCI tries to keep node as current as possible during development so use the latest version 10.x for best results or at a minimum the last version of 9.x. Getting these prerequistes set up is beyond the scope of this readme. One pretty easy way is using node version manager which makes it easy to swap between versions of node if need be (not supported in Windows but see their suggested alternative)

OS Support

UCI was developed primarly for IOT (internet of things) and SBCs (single board computers) like the Raspberry Pi that run linux and nodejs. As such there was NO effort made to confirm that this base class or any of its extensions will work on a machine running Windows or OSX. You are welcome to try. I predict no issues on OSX but definitely using 'named pipes' on Windows will likely not work without some changes to the @uci/socket module.

Terminology

While developing the UCI library the following terminolgy was adopted to describe a communication connection through which the JSON packets can potentially travel. Each connection is specified with a type and a transport

type: can be either s or c. s refers to either socket or server and c refers to either consumer or client. transport: refers to how the packet is transported from a socket to consumer and vice versa. There are several transport Methods

  • n is for named pipe transport better known as a unix socket in unix. This is the prefered transport for communication within a single computing device.
  • t is for TCP transport which stands for transmission control protocol and is THE transport for IP(Internet Proctocol) networks which means it's great for both LAN and WAN communiction
  • m is for MQTT which is another protocol specifically adopted by the IOT community for easy inter-device communication. It requires one to run a broker in order to broker the packets from on device to another and vice versa. Home Assistant is one home control frontend that supports MQTT. This means home assistant can control any device which extends this base.
  • w is for web socket. A web socket is a special version of a TCP socket that allows easy communication from a browser to a web socket server. This means any classes derviced from this base class will be able to communicate directly with a broswer!

The UCI JSON Packet 'Protocol'

If you are a javascript programmer then you already know about object hashes. JSON is a stringified representation of such object hashes. Being a string JSON can be easily encoded and sent via a socket. It can then be parsed at the other end back into an object hash. There in lies the power of sending a JSON packet rather than some generic string. A UCI JSON packet starts and ends its life as an object hash. When creating this hash you need make sure to include at a minimum at command property (key:value pair e.g. cmd:'switch/on'). It is this cmd property that will result in a function being executed at the other end of the socket using the parsed value of cmd: as the function name and any other properties of the packet/hash you include as arguments or data to the called function. The function(s) that can be invoked at the target live in a name spaced hash. The base class manages invoking the appropriate function for you. You only need to create the function(s) hash for your instance/class that corresponds to the packet cmd values you want to recognize/support. That's the gist of how the UCI socket communication system works. Another cool thing about the UCI protocol is that it attaches automatically a unique header ID to each packet and then listens for when a packet comes back with that ID. In this way you can await for a response from your socket sever and then take an action like turning a button green after getting confirmation a 'switch/on' command did indeed turn on the corresponding circuit(s). The socket/server modules also support push notifications! As to MQTT the UCI mqtt module takes the cmd property and converts it into the equivlent mqtt topic and vice versa sending the remaing hash as the MQTT payload. This makes MQTT interoperabilty with the UCI JSON Packet Protocol seamless.

Getting Started

The best way to get started is to clone this repo and then take a look at and run the four-in-one example found in the /examples. You can run it with npm run fio script. This example creates an instance of this base class that fires up four socket/servers of each transport and two consumers of transport tcp and named pipe. With this running in a terminal you can now "mess around" sending packets to this instance with a mqtt or websocket client. Here are two clients I like mqttbox and simple websocket client which runs only within google chrome . Another options is to use the UCI websocket development client found here

TODO describe how to connect and what packet command/topic to send/use.

Creating an Instance

Extending This Base Class

Options

API